

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0258 of 23 March 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Superbond

Bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

32 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0258

Page 2 of 32 | 23 March 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0258

Page 3 of 32 | 23 March 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer injection system FIS SB is a bonded anchor consisting of a cartridge with injection mortar fischer FIS SB, FIS SB Low Speed or FIS SB High Speed or a mortar capsule fischer RSB and a steel element. The steel element consist of

- a threaded rod with washer and hexagon nut of sizes M8 to M30 or
- internal threaded anchor RG MI of sizes M8 to M20 or
- a deformed reinforcing bar of sizes ϕ = 8 to 32 mm or
- a fischer rebar anchor FRA of sizes M12 to M24

The steel element is placed into a drilled hole filled with injection mortar or a mortar capsule RSB and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	See Annex C 1 to C 10		
Characteristic values for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements	See Annex C 11 to C 13		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

European Technical Assessment ETA-12/0258

Page 4 of 32 | 23 March 2015

English translation prepared by DIBt

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

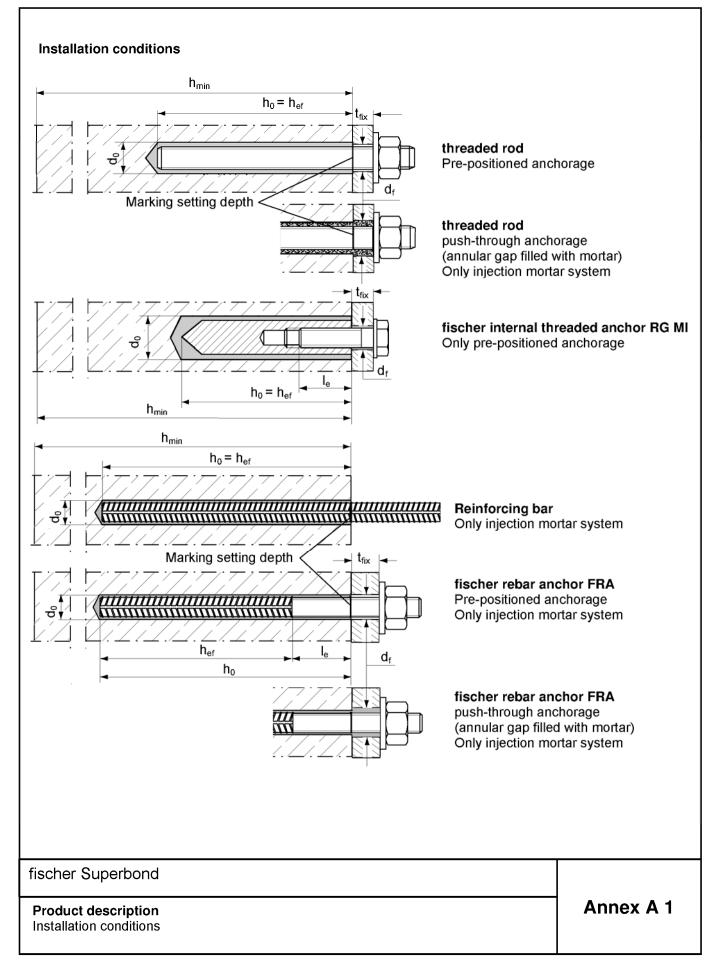
3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

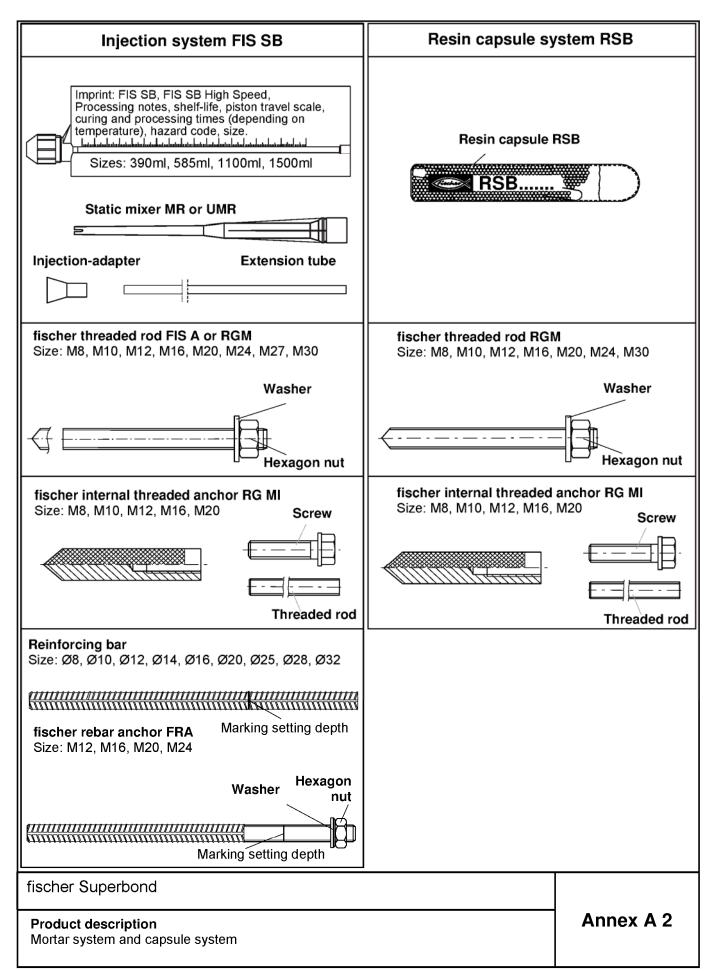
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings		1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 23 March 2015 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentLange

8

fischer rebar anchor FRA

Threaded part:

Property class 70

ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014

Part	Designation		Material					
1	Mortar cartridge	Mortar, hardener, filler						
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C				
2	Threaded rod	Property class 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated \geq 5 μ m, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 >$ 12% fracture elongation	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\% \text{ fracture elongation}$	Property class 50 or 8 EN ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 12\%$ fracture elongation				
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014				
5	fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
6	Screw or threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
7	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods cla f_{yk} and k according to NDP of $f_{uk} = f_{tk} = k \cdot f_{yk}$ (k see Annex	ss B or C with or NCL of EN 1992-1-1/	NA:2013				

fischer Superbond	
Product description Materials	Annex A 3

Rebar part: Bars and de-coiled rods

class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$ (k see Annex B 4)

Specifications of intended use (part 1) Table B1: Overview use categories and performance categories Mortar system FIS SB with ... Anchorages subject to fischer rebar Threaded rod fischer internal threaded Reinforcing bar anchor FRA anchor RG MI Hammer drilling all sizes Diamond drilling Not permitted uncracked Static and Tables: Tables: Tables: all all Tables: all concrete quasi-static C1; C3; C5; C7; C9; C8; C10; all sizes C3; C6; C13; C14 sizes sizes sizes C11; C12 C15; C16 C17; C18 load, in cracked concrete Ø 8 M8 Table Seismic C1 Table C20 C19 performance M30 Ø 32 category M12, (only M16, Table hammer C2 M20, C21 drilling) M24 Dry or wet all sizes Use concrete category Flooded hole Not permitted Anchorages subject to Capsule system RSB with ... fischer rebar Threaded rod fischer internal threaded Reinforcing bar anchor FRA RGM only anchor RG MI [8] Hammer drilling Permitted ≥ Ø 18 mm Not permitted all sizes Not permitted Diamond drilling RGM M16 to M30 Permitted ≥ Ø 18 mm Not permitted Not permitted un-Tables: cracked M10 Static and Tables: all C1;C2; C3; concrete C3; C4; C6; C13; quasi-static C5; C11; sizes M20 C14 load, in cracked C12 concrete M8 Seismic Table C1 performance C19 M30 category (only hammer C2 drilling) Dry or wet RGM all sizes All sizes Use concrete category Flooded hole RGM all sizes All sizes fischer Superbond Annex B 1 Intended Use Specifications (part 1)

Specifications of intended use (part 2)

Installation ter	nperature	+5°C to +40°C			
	Temperature range I	-40°C to +40°C	(max. long term temperature +24°C and max. short term temperature +40°C)		
In-service	Temperature range II	-40°C to +80°C	(max. long term temperature +50°C and max. short term temperature +80°C)		
temperature	Temperature range III -40°C to +120°C		(max. long term temperature +72°C and max. short term temperature +120°C)		
	Temperature range IV	-40°C to +150°C	(max. long term temperature +90°C and max. short term temperature +150°C)		

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition or in other particular aggressive conditions (high corrosion resistant steel)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- · Anchorages under static or quasi-static actions are designed in accordance with: TR 029
- · Anchorages under seismic actions have to be designed in accordance with: TR 045

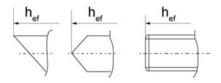
Installation

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: The hole shall be filled with mortar
- · Marking and keeping the effective anchorage depth

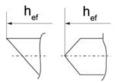
Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according to Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth

fischer Superbond	
Intended Use Specifications (part 2)	Annex B 2


Table B2: Installation parameters for threaded rods

Size					M8	M10	M12	M16	M20	M24	M27	M30
Width acr	oss flat		SW	[mm]	13	17	19	24	30	36	41	46
	Nominal drill b	it diameter	d_0	[mm]	10	12	14	18	24	28	30	35
	Depth of drill h	nole	h_0	[mm]				h _o :	= h _{ef}			
	Effective anch	orage	$\mathbf{h}_{ef,min}$	[mm]	60	60	70	80	90	96	108	120
Injection	depth		$h_{\text{ef,max}}$	[mm]	160	200	240	320	400	480	540	600
mortar FIS SB	Diameter of clearance	pre- positioned anchorage	≤ d _f	[mm]	9	12	14	18	22	26	30	33
	hole in the fixture ¹⁾	push through anchorage	≤ d _f	[mm]	11	14	16	20	26	30	33	40
	Nominal drill bit diameter			[mm]	10	12	14	18	25	28		35
	Depth of drill h	nole	h_0	[mm]				h _o :	= h _{ef}			
Resin	Effective	_	$h_{\rm ef,1}$	[mm]		75	75	95				
capsule	anchorage	_	$h_{ef,2}$	[mm]	80	90	110	125	170	210		280
RSB	depth		$h_{\rm ef,3}$	[mm]		150	150	190	210			
NOD	Diameter of clearance hole in the fixture ¹⁾	Only pre- e positioned anchorage		[mm]	9	12	14	18	22	26		33
Minimum minimum distance	spacing and edge	s _{min} = c _{mi}	n	[mm]	40	45	55	65	85	105	120	140
	Minimum thickness of concrete member		h _{min}	[mm]	h _{ef}	h _{ef} + 30 (≥100) h _{ef} + 2d ₀			0			
Maximum	torque momen	t n	nax T _{inst}	[Nm]	10	20	40	60	120	150	200	300


¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1

fischer threaded rod:

Alternative point geometry threaded rod FIS A

Alternative point geometry threaded rod RGM

Marking (on random place):

Property class 8.8 or high corrosion-resistant steel, property class 80: •

h_{ef} \geq

Alternative head geometry threaded rod FIS A

and RGM

Marking setting depth

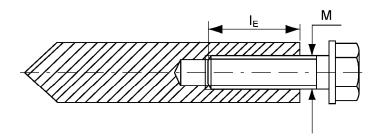
Stainless steel A4, property class 50 and high corrosion-resistant steel, property class 50: ••

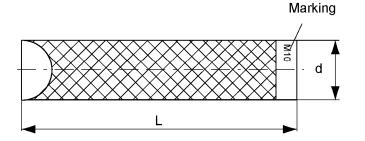
fischer Superbond

Intended Use

Installation parameters threaded rods

Annex B 3




Table B3: Installation parameters fischer internal threaded anchors RG MI

						Г	
Size			М8	M10	M12	M16	M20
Diameter of anchor	d_H	[mm]	12	16	18	22	28
Nominal drill bit diameter	d_0	[mm]	14	18	20	24	32
Drill hole depth	ho	[mm]			$h_0 = h_{ef}$		
Effective anchorage depth $(h_{ef} = L_H)$	h _{ef}	[mm]	90	90	125	160	200
Maximum torque moment	max T _{inst}	[Nm]	10	20	40	80	120
Minimum spacing	S _{min}	[mm]	55	65	75	95	125
Minimum edge distance	C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d_{f}	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	125	165	205	260
Maximum screw-in depth	I _{E,max}	[mm]	18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$	[mm]	8	10	12	16	20

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1

fischer internal threaded anchor RG MI

Marking: Anchor size

e.g.: **M10**

Stainless steel additional A4

e.g.: M10 A4

High corrosion-resistant steel additional C

e.g.: M10 C

Fastening screw or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Table A1

fischer Superbond	
Intended Use Installation parameters fischer internal threaded anchors RG MI	Annex B 4

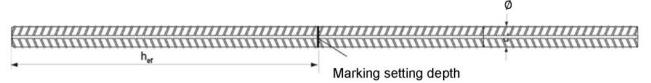


Table B4: Installation parameters reinforcing bars

Nominal bar size		Ø	8 ¹⁾	10 ¹⁾	12	1)	14	16	20	25	28	32
Nominal drill bit diameter	d ₀	[mm]	(10)12	(12)14	(14)	16	18	20	25	30	35	40
Drill hole depth	h _o	[mm]	$h_0 = h_{ef}$									
Effective	h _{ef,min}	[mm]	60	60	70)	75	80	90	100	112	128
anchorage depth	h _{ef,max}	[mm]	160	200	240	0	280	320	400	500	560	640
Minimum spacing	S _{min}	[mm]	40	45	55	,	60	65	85	110	130	160
Minimum edge distance	C _{min}	[mm]	40	45	55	,	60	65	85	110	130	160
Minimum thickness of concrete member	h _{min}	[mm]	$h_{ef} + 30 \ge 100$ $h_{ef} + 2d_0$									

¹⁾ Both drill bit diameters can be used.

Reinforcing bar

Properties of reinforcement: refer to EN 1992-1-1 Annex C, Table C.1 and C.2N

Product form		Non-zinc-plated bars and de-coiled roo			
Class	В	С			
Characteristic yield strength	f _{yk} or f ₀	_{,2k} [MPa]	400 to	600	
Minimum value of $k = (f_t / f_v)_k$			≥ 1,08	≥ 1,15	
Williman value of K = (I ₁ 7 I _y) _k		≥ 1,00	< 1,35		
Characteristic strain at maximum for	rce	ε _{uk} [%]	≥ 5,0	≥ 7,5	
Bentability		_	Bend / Rebend test		
Maximum deviation from nominal mass (individual	Nominal bar	≤ 8	± 6,0		
bar) [%]	size [mm]	> 8	± 4,5	5	
Bond:	Nominal bar	8 to 12	0,040		
Minimum relative rib area, f _{R,min} (determination acc. to EN 15630)	size [mm]	> 12	0,056		

Rib height h:

The rib height h must be Ø = nominal bar size

 $0.05*\emptyset \leq h \leq 0.07*\emptyset$

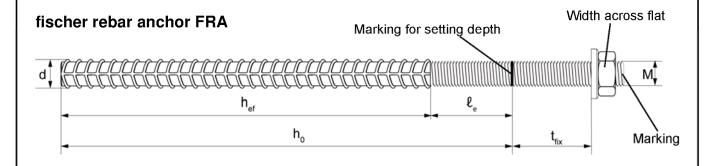

fischer Superbond	
Intended Use Installation parameters reinforcing bars	Annex B 5

Table B5: Installation parameters fischer rebar anchor FRA

Thread diameter				M12	1)	M16	M20	M24
Nominal bar size		Ø	[mm]	12		16	20	25
Width across flat		SW	[mm]	19		24	30	36
Nominal drill bit diameter		d ₀	[mm]	(14)	16	20	25	30
Depth of drill hole ($h_0 = I_{ges}$)		h ₀	[mm]			h _{ef} +	l _e	
Distance concrete surface to welded join		ℓ e	[mm]			100		
Effective anabarage depth		h _{ef,min}	[mm]	70		80	90	96
Effective anchorage depth	ı	[mm]	140		220	300	380	
Maximum torque moment		x T _{inst}	[Nm]	40		60	120	150
Minimum spacing		S _{min}	[mm]	55		65	85	105
Minimum edge distance		C _{min}	[mm]	55		65	85	105
Diameter of clearance hole in	Pre-positioned anchorage	≤ d _f	[mm]	14		18	22	26
the fixture ²⁾	Push through anchorage	≤ d _f	[mm]	18		22	26	32
Minimum thickness of concrete member	h_{min} [mm] $h_{ef} + 30$ $h_{ef} + 2d_0$							

¹⁾ Both drill bit diameters can be used

Marking: on head e.g.: FRA (for stainless steel); FRA C (for high corrosion-resistant steel)

fischer Superbond	
Intended Use Installation parameters fischer rebar anchor FRA	Annex B 6

²⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1

Table B6: Dimensions of resin capsule RSB

Capsule		[-]	RSB 8	RSB 10 mini	RSB 10	RSB 12 mini	RSB 12	RSB 16 mini	RSB 16	RSB 16 E	RSB 20	RSB 20 E /24	RSB 30
Diameter	D_p	[mm]	9,0	10),5	12	2,5		16,5		23	5,0	27,5
Length	L_P	[mm]	85	72	90	72	97	72	95	123	160	190	260

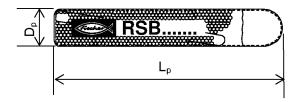


Table B7: Allocation Resin capsule RSB to fischer threaded rods RGM

Size			М8	M10	M12	M16	M20	M24	M30
Nominal drill bit diameter	d ₀	[mm]	10	12	14	18	25	28	35
Minimum setting depth	$h_{\text{ef},1}$	[mm]		75	75	95			
Associated resin capsule RSB		[-]		10mini	12mini	16mini			
Medium setting depth	$h_{\text{ef,2}}$	[mm]	80	90	110	125	170	210	280
Associated resin capsule RSB		[-]	8	10	12	16	20	20 E/24	30
Maximum setting depth	h _{ef,3}	[mm]		150	150	190	210		
Associated resin capsule RSB		[-]		2x10mini	2x12mini	2x16mini	20 E/24		

Table B8: Allocation resin capsule RSB to fischer internal threaded anchor RG MI

Size			M8	M10	M12	M16	M20
Nominal drill bit diameter	d_0	[mm]	14	18	20	24	32
Setting depth	h _{ef}	[mm]	90	90	125	160	200
Associated resin capsule RSB		[-]	10	12	16	16 E	20 E/24

fischer Superbond

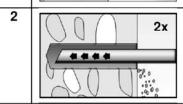
Intended Use
Resin capsule RSB
Parameters and allocations

Annex B 7

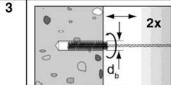
Table B9: Parameters of steel brush FIS BS Ø

Drill bit diameter	[mm]	10	12	14	16	18	20	24	25	28	30	32	35	40
Steel brush diameter d _b	[mm]	11	14	16	2	0	25	26	27	30		40		42

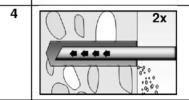
Table B10: Maximum permissible processing times and minimum curing times (minimum cartridge temperature 5°C; minimum capsule temperature -15°C)


Tempera anchor				ocessing time ninutes]		Minimum curir t _{cure} [minut	ŭ
	°Č]		FIS SB	FIS SB High Speed	FIS SB	FIS SB High Speed	RSB
-30	to	-20		_			120 hours
>-20	to	-15		60		24 hours	48 hours
>-15	to	-10	60	30	36 hours	8 hours	30 hours
>-10	to	-5	30	15	24 hours	3 hours	16 hours
>-5	to	±0	20	10	8 hours	2 hours	10 hours
>±0	to	+5	13	5	4 hours	1 hour	45
>+5	to	+10	9	3	120	45	30
>+10	to	+20	5	2	60	30	20
>+20	to	+30	4	1	45	15	5
>+30	to	+40	2		30		3

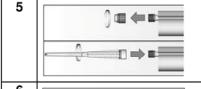
fischer Superbond	
Intended Use Cleaning tools Processing times and curing times	Annex B 8


Installation instructions part 1 Drilling and cleaning the hole (hammer-drilling) for mortar system FIS SB

Drill the hole. Drill hole diameter d_0 and drill hole depth h_0 see **Tables B2**, **B3**, **B4**, **B5**.

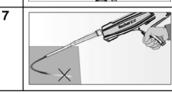


Blow out the drill hole twice with oil-free compressed air ($p \ge 6$ bar). The use of a manual blow-out pump is possible in uncracked concrete, if at the same time the drill hole diameter is less than 18 mm and the embedment depth $h_{\rm ef}$ is less than 10d.


Brush the drill hole two times. For deep holes use an extension. Corresponding brushes see **Table B9**

Blow out the drill hole twice with oil-free compressed air ($p \ge 6$ bar). The use of a manual blow-out pump is possible in uncracked concrete, if at the same time the drill hole diameter is less than 18 mm and the embedment depth $h_{\rm ef}$ is less than 10d.

Preparing the cartridge

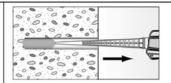

Twist off the sealing cap

Twist on the static mixer (the spiral in the static mixer must be clearly visible).

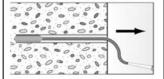
Place the cartridge into the dispenser.

Press approx. 10 cm of material out until the resin is evenly grey in colour. Don't use mortar that is not uniformly grey.

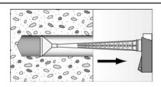
fischer Superbond


Intended use
Installation instructions part 1

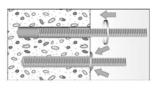
Annex B 9

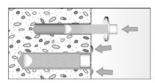


Installation instructions part 2 Injection of the mortar


8

Fill approx. 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles.

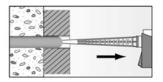

For drill hole depth ≥ 150 mm use an extension hose.



For overhead installation, deep holes $h_0 > 250$ mm or drill hole diameter $d_0 \ge 40$ mm use an injection-adapter.

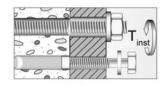
Installation threaded rods or fischer internal threaded anchors RG MI

9



Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Press the threaded rod or fischer internal threaded anchor down to the bottom of the hole, turning it slightly while doing so. After inserting the anchor element, excess mortar must emerge around the anchor element.

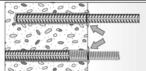
For overhead installations support the anchor rod with wedges.



For push through installation fill the annular clearance with mortar.

10

Wait for the specified curing time, t_{cure} see **Table B10**.

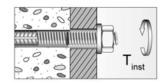


Mounting the fixture max T_{inst} see **Tables B2, B3.**

Installation reinforcing bars and fischer FRA

9

Only use clean and oil-free rebars. Mark the setting depth of the reinforcing bar. Using a turning movement, push the reinforcement bar or the FRA vigorously into the filled hole up to the insertion depth marking.



When reaching the setting depth mark, excess mortar must emerge from the mouth of the drill hole.

10

Wait for the specified curing time t_{cure} see **Table B10**.

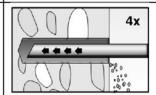
Mounting the fixture max T_{inst} see **Table B5.**

fischer Superbond

Intended use

Installation instructions part 2

Annex B 10



Installation instructions part 3 Drilling and cleaning the hole (hammer-drilling) for capsule RSB

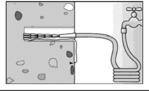
1 do

Drill the hole.
Drill hole diameter **d**₀ and drill hole depth **h**₀ see **Tables B2**, **B3**, **B4**, **B5**.

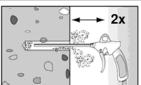
2


Blow out the drill hole four times with oil-free compressed air ($p \ge 6$ bar). The use of a manual blow-out pump is possible in uncracked concrete, if at the same time the drill hole diameter is less than 18 mm and the embedment depth h_{ef} is less than 10d.

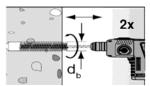
Drilling and cleaning the hole (diamond-drilling) for capsule RSB


1 h_o

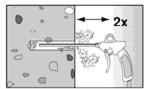
Drill the hole. Drill hole diameter d_0 and drill hole depth h_0 see Tables B2, B3.


Break the drill core and draw it out.

2


Flush the drill hole until the water comes clear.

3


Blow out the drill hole two times, using oilfree compressed air (p > 6 bar)

4

Brush the drill hole two times using a power drill. Corresponding brushes see **Table B9**

5

Blow out the drill hole two times, using oilfree compressed air (p > 6 bar)

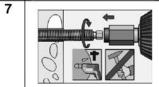
fischer Superbond

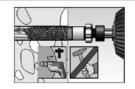
Intended use

Installation instructions part 3

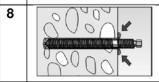
Annex B 11

Installation instructions part 4

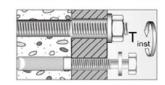

Installation fischer anchor rods RGM or fischer internal threaded anchors RG MI with capsule RSB


6

Resin capsule RSB or two RSB mini, must be pushed into the drill hole by hand.



Depending on the anchor being installed, use a suitable setting tool.


Only use clean and grease-free anchors. Using a suitable adapter, drive the RG M or fischer internal threaded anchor RG MI into the capsule using a hammer drill set on rotary hammer action. Stop when the anchor reaches the bottom of the hole and is set to the correct embedment depth.

When reaching the correct embedment depth, excess mortar must emerge from the mouth of the drill hole. If not, the anchor must be pulled out directly and a second resin capsule must be pushed into the drill hole. Setting process must be repeated (7).

Wait for the specified curing time, t_{cure} see **Table B10**.

Mounting the fixture max T_{inst} see **Tables B2, B3.**

fischer Superbond

Intended use
Installation instructions part 4

Annex B 12

Table C1: Characteristic values of resistance for threaded rods under tension with mortar FIS SB or capsule RSB in hammer drilled hole

Size				М8	M10	M12	M16	M20	M24	M27 ³⁾	M30
Installation	dry and wet concrete		[-]				1	,0			
safety factor	flooded hole ²⁾	γ2	[-]	1	1,2 1,0						
Combined pullou	ut and concrete o	one	failur	е							
Diameter of calcu	lation	d [mm]	8	10	12	16	20	24	27	30
Characteristic bo	ond resistance ir	un-	crack	ed cond	rete C2	0/25					
Temperature range	$I^{1)}$ $ au_{Rk,ucr}$	[N/r	nm²]	12	13	13	13	13	12	10	10
Temperature range		[N/r	nm²]	12	12	12	13	13	12	10	10
Temperature range	$111^{1)}$ $\tau_{Rk,ucr}$	[N/r	nm²]	10	11	11	11	11	11	9	9
Temperature range	$IV^{1)}$ $ au_{Rk,ucr}$	[N/r	nm²]	10	10	10	11	10	10	8	8
Characteristic bo	ond resistance in	crac	cked	concret	e C20/25	5					
Temperature range	$I^{1)}$ $ au_{Rk,cr}$	[N/r	nm²]	6,5	7,0	7,5	7,5	7,5	7,5	7,5	7,5
Temperature range	$II^{1)}$ $ au_{Rk,cr}$	[N/r	nm²]	6,0	6,5	7,5	7,5	7,5	7,5	7,0	7,0
Temperature range	$III^{1)}$ $ au_{Rk,cr}$	[N/r	nm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,0	6,0
Temperature range	$IV^{1)}$	[N/r	nm²]	5,0	5,5	6,0	6,0	6,0	6,0	5,5	5,5
	C2	5/30	[-]				1,	02			
	C3	0/37	[-]				1,	04			
Increasing	Ψ_c $C3$	5/45	[-]				1,	07			
factor τ_{Rk}	C4	0/50	[-]				1,	80			
	C4	5/55	[-]				1,	09			
	C5	0/60	[-]				1,	10			
Splitting failure											
	h/h _{ef} ≥2	,0 [mm]				1,0	h _{ef}			
Edge distance C _{cr,sp}	Edge distance 2,0>h/h _{ef} >1,3						4,6 h _{ef}	– 1,8 h			
oci,sp	h/h _{ef} ≤1	,3 [mm]	2,26 h _{ef}							
Spacing	S _{cr}	sp [mm]				2 c	cr,sp			

¹⁾ See Annex B 2 2) Only RSB

fischer Superbond Annex C 1 **Performances** Design of bonded anchors Static or quasi-static action in tension

³⁾ Only FIS SB

Table C2: Characteristic values of resistance for threaded rods under tension with capsule RSB in diamond drilled hole

					1	1			T	T			
Size				М8	M10	M12	M16	M20	M24	M30			
Installation	dry and wet concrete	0.6	[-]	1,0									
safety factor fl	ooded hole	γ2	[-]	1	,2			1,0					
Combined pullout a	nd concrete	con	e failu	ıre									
Diameter of calculation	on d		[mm]	8	10	12	16	20	24	30			
Characteristic bond	resistance i	n un	-crac	ked cond	rete C20/	25							
Temperature range l	τ _{Rk,ucr}	[N/r	mm²]	13	13	14	14	14	13	11			
Temperature range II	1) τ _{Rk,ucr}	[N/r	mm²]	12	13	13	14	13	13	10			
Temperature range II	$I^{1)}$ $ au_{Rk,ucr}$	[N/r	mm²]	11	12	12	12	12	11	9,5			
Temperature range I	$V^{1)}$ $\tau_{Rk,ucr}$	[N/r	mm²]	10	11	11	11	11	10	8,5			
Characteristic bond	resistance i	n cra	acked	concret	e C20/25								
Temperature range l	$ au_{Rk,cr}$	[N/r	mm²]				7,5	7,5	7,5	7,5			
Temperature range II		[N/r	mm²]				7,5	7,5	7,5	7,0			
Temperature range II			mm²]				6,5	6,5	6,5	6,5			
Temperature range I			mm²]				6,0	6,0	6,0	6,0			
		25/30	+	1,02									
		30/37	+ • •				1,04						
Increasing Ψ_{c}		35/45	+				1,07						
factor τ_{Rk}		10/50	+				1,08						
		15/55	+ • •				1,09						
	C.5	50/60	[-]				1,10						
Splitting failure													
Edge distance		[mm]				1,0 h _{ef}							
C _{cr,sp}	2,0>h/h _{ef} >1			4,6 h _{ef} – 1,8 h									
	h/h _{ef} ≤1		[mm]	2,26 h _{ef}									
Spacing	S _{cr.}	sp	[mm]				2 c _{cr,sp}						

¹⁾ See Annex B 2

fischer Superbond	
Performances Design of bonded anchors Static or quasi-static action in tension	Annex C 2

Table C3: Characteristic values of resistance for fischer internal threaded anchors RG MI under tension load with mortar FIS SB or capsule RSB in hammer drilled hole

Size				М8	M10	M12	M16	M20	
Installation safety	dry and wet concrete	ete	[-]		1,0				
factor	flooded hole ²⁾	γ ₂	[-]	1,2		1,	0		
Steel failure									
	Property	5.8	[kN]	19	29	43	79	123	
Characteristic resistance	class	8.8	[kN]	29	47	68	108	179	
with screw $N_{\text{Rk,s}}$	Property	A4	[kN]	26	41	59	110	172	
	class 70	С	[kN]	26	41	59	110	172	
Combined pullout and c	oncrete cone f	ailure							
Diameter of calculation		d _H	[mm]	12	16	18	22	28	
Characteristic bond resi	stance in un-c	racked co	ncrete C2	20/25					
Temperature range I ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	12	12	11	11	9,5	
Temperature range II ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	12	11	11	10	9	
Temperature range III ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	11	10	10	9	8	
Temperature range IV ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	10	9,5	9	8,5	7,5	
Characteristic bond resi	stance in crac	ked conc	rete C20/2	5					
Temperature range I ¹⁾		$ au_{Rk,cr}$	[N/mm²]			5			
Temperature range II ¹⁾		$ au_{Rk,cr}$	[N/mm²]	5					
Temperature range III ¹⁾		$ au_{Rk,cr}$	[N/mm²]	4,5					
Temperature range IV ¹⁾		$ au_{Rk,cr}$	[N/mm²]	4					
		C25/30	[-]			1,02			
		C30/37	[-]	1,04					
Increasing factor τ _{Rk} Ч	ر _د —	C35/45	[-]			1,07			
moreasing racion trik		C40/50	[-]			1,08			
		C45/55	[-]			1,09			
		C50/60	[-]	[-] 1,10					
Splitting failure			,						
		h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}			
Edge distance c _{cr,sp}		h/h _{ef} >1,3	[mm]		4,0	6 h _{ef} – 1,8	3 h		
		h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}					
Spacing		S _{cr,sp}	[mm]			2 c _{cr,sp}			

¹⁾ See Annex B 2 ²⁾ Only RSB

fischer Superbond	
Performances Design of bonded anchors Static or quasi-static action in tension	Annex C 3

Table C4: Characteristic values of resistance for fischer internal threaded anchors RG MI under tension load with capsule RSB in diamond drilled hole

Size				М8	M10	M12	M16	M20
Installation safety	dry and wet concrete		[-]		1,0			
factor	flooded hole	γ2	[-]	1,2		1	,0	
Steel failure								
	Property	5.8	[kN]	19	29	43	79	123
Characteristic resistance	class	8.8	[kN]	29	47	68	108	179
with screw $N_{\text{Rk,s}}$	Property	A4	[kN]	26	41	59	110	172
	class 70	С	[kN]	26	41	59	110	172
Combined pullout and co	oncrete cone f	ailure						
Diameter of calculation		d _H	[mm]	12	16	18	22	28
Characteristic bond resis	stance in un-c	racked co	ncrete C2	20/25			•	
Temperature range I ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	13	12	12	11	10
Temperature range II ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	13	12	12	11	9,5
Temperature range III ¹⁾		[N/mm²]	11	11	10	9,5	8,5	
Temperature range IV ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	10	10	9,5	9	8
Characteristic bond resis	stance in cracl		rete C20/2	5				
Temperature range I ¹⁾		$ au_{Rk,cr}$	[N/mm²]		5			
Temperature range II ¹⁾		$ au_{Rk,cr}$	[N/mm²]			į	5	
Temperature range III ¹⁾		$ au_{Rk,cr}$	[N/mm²]			4	,5	
Temperature range IV ¹⁾		$ au_{Rk,cr}$	[N/mm²]			4	4	
		C25/30	[-]		•	1,02		
		C30/37	[-]			1,04		
Increasing		C35/45	[-]			1,07		
factor $\tau_{Rk} \qquad \Psi_c$		C40/50	[-]			1,08		
		C45/55	[-]			1,09		
		C50/60	[-]	1,10				
Splitting failure								
		h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}		
Edge distance c _{cr,sp}	2,0>	h/h _{ef} >1,3	[mm]	4,6 h _{ef} – 1,8 h				
		h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}				
Spacing		$s_{cr,sp}$	[mm]			2 c _{cr,sp}		

¹⁾ See Annex B 2

fischer Superbond	
Performances Design of bonded anchors Static or quasi-static action in tension	Annex C 4

Table C5: Characteristic values of resistance for threaded rods under shear loads

Size	М8	M10	M12	M16	M20	M24	M27	M30
Factor k in equation (5.7) of TR 029 for the design of k [-] Bonded Anchors				2	,0			

Table C6: Characteristic values of resistance for fischer internal threaded anchors RG MI under shear load

Size				М8	M10	M12	M16	M20
Installation safety factor		γ2	[-]			1,0		
Steel failure without leve	r arm							
	Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0
Characteristic	class	8.8	[kN]	14,6	23,2	33,7	62,7	90,0
resistance V _{Rk,s}	Property	A4	[kN]	12,8	20,3	29,5	54,8	86,0
	class 70	С	[kN]	12,8	20,3	29,5	54,8	86,0
Steel failure with lever ar	m							
	Property	5.8	[Nm]	20	39	68	173	337
Characteristic	class	8.8	[Nm]	30	60	105	266	519
resistance M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232	454
	class 70	С	[Nm]	26	52	92	232	454
Concrete pryout failure								
Factor k in equation (5.7) of the design of Bonded Anch		k	[-]	2,0				

fischer Superbond	
Performances Design of bonded anchors Static or quasi-static action under shear loads	Annex C 5

2 C_{cr,sp}

Table C7: Char	acteristic valu	es of res	istanc	e for r	einfor	cing b	ars un	der tei	nsion I	loads v	with
morta	ar FIS SB in ha	ammer d	rilled h	nole							
Size	Ø	[mm]	8	10	12	14	16	20	25	28	32
Installation safety fact	tor γ ₂	[-]			ı	I.	1,0		ı		
Combined pullout a	nd concrete con	e failure									
Diameter of calculation	on d	[mm]	8	10	12	14	16	20	25	28	32
Characteristic bond	resistance in ui	n-cracked	concr	ete C20)/25	•		•	•	•	
Temperature range I ¹	τ _{Rk,ucr}	[N/mm ²]	8,0	8,5	9,0	9,5	9,5	10	9,5	9,0	7,5
Temperature range II		[N/mm ²]	8,0	8,5	9,0	9,0	9,5	9,5	9,0	8,5	7,5
Temperature range II	$I^{1)}$ $ au_{Rk,ucr}$	[N/mm ²]	7,0	7,5	8,0	8,0	8,5	8,5	8,0	7,5	6,5
Temperature range I\	$I^{(1)}$ $ au_{Rk,ucr}$	[N/mm ²]	6,5	7,0	7,0	7,5	7,5	8,0	7,5	7,0	6,0
Characteristic bond	resistance in cr	acked co	ncrete	C20/25	i						
Temperature range I ¹	τ _{Rk,cr}	[N/mm ²]	4,5	6,0	6,0	6,0	7,0	6,0	6,0	6,0	6,0
Temperature range II	1) $ au_{Rk,cr}$	[N/mm ²]	4,5	5,5	5,5	5,5	6,5	6,0	6,0	6,0	6,0
Temperature range II		[N/mm ²]	4,0	5,0	5,0	5,0	6,0	5,5	5,5	5,5	5,5
Temperature range I\	$I^{(1)}$ $ au_{Rk,cr}$	[N/mm ²]	3,5	4,5	4,5	4,5	5,5	5,0	5,0	5,0	5,0
	C25/30	[-]					1,02				
	C30/37	[-]					1,04				
Increasing	C35/45	[-]					1,07				
factor τ_{Rk} Ψ_c	C40/50	[-]					1,08				
	C45/55	[-]					1,09				
	C50/60	[-]	1,10								
Splitting failure											
_	h/h _{ef} ≥2,0	[mm]					1,0 h _{ef}				
Edge distance c _{cr,sp} _	2,0>h/h _{ef} >1,3	[mm]					h _{ef} -1,				
	h/h _{ef} ≤1,3	[mm]					2,26 h _e	f			

[mm]

 $\mathbf{S}_{\text{cr,sp}}$

1)	See	Annex	В	2

Spacing

fischer Superbond	
Performances	Annex C 6
Design of bonded anchors	
Static or quasi-static action in tension	

Table C8: Characteristic values of resistance for fischer rebar anchors FRA under tension loads with mortar FIS SB in hammer drilled hole

		T		T	I	 		
Size			M12	M16	M20	M24		
Installation safety factor	γ ₂	[-]	1,0					
Steel failure								
Characteristic resistance	$N_{Rk,s}$	[kN]	63	111	173	270		
Partial safety factor	γ _{Ms,N} 1)	[-]		1	,4			
Combined pullout and o	concrete cone f	ailure						
Diameter of calculation	d	[mm]	12	16	20	25		
Characteristic bond res	istance in un-c	racked co	ncrete C20/25	i				
Temperature range I 2)	$ au_{Rk,ucr}$	[N/mm ²]	9,0	9,5	10	9,5		
Temperature range II 2)	$ au_{Rk,ucr}$	[N/mm ²]	9,0	9,5	9,5	9,0		
Temperature range III 2)	$ au_{Rk,ucr}$	[N/mm ²]	8,0	8,5	8,5	8,0		
Temperature range IV 2)	$ au_{Rk,ucr}$	[N/mm ²]	7,0	7,5	8,0	7,5		
Characteristic bond res	istance in crac	ked concr	ete C20/25					
Temperature range I 2)	$ au_{Rk,cr}$	[N/mm ²]	6,0	7,0	6,0	6,0		
Temperature range II 2)	$ au_{Rk,cr}$	[N/mm ²]	5,5	6,5	6,0	6,0		
Temperature range III 2)	$ au_{Rk,cr}$	[N/mm ²]	5,0	6,0	5,5	5,5		
Temperature range IV 2)	$ au_{Rk,cr}$	[N/mm ²]	4,5	5,5	5,0	5,0		
	C25/30	[-]		1,	,02			
	C30/37	[-]		·	,04			
Increasing	C35/45	[-]			,07			
factor τ_{Rk} Ψ_c	C40/50	[-]		<u>'</u>	,19			
	C45/55	[-]			,08			
	C50/60	[-]		1,	,10			
Splitting failure								
	h/h _{ef} ≥2,0	[mm]) h _{ef}			
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]			_f – 1,8 h			
	h/h _{ef} ≤1,3	[mm]			6 h _{ef}			
Spacing	S _{cr,sp}	[mm]		2 (C _{cr,sp}			

¹⁾ In absence of other national regulations

fischer Superbond	
Performances	Annex C 7
Design of bonded anchors	
Static or quasi-static action in tension	

²⁾ See Annex B 2

Table C9: Characteristic values of resistance for reinforcing bars under shear loads with mortar FIS SB

Size	Ø	[mm]	8	10	12	14	16	20	25	28	32
Concrete pryout failure											
Factor k in equation (5.7) of Technical Report TR 029, Section 5.2.3.3	k	[-]					2,0				

Table C10: Characteristic values of resistance for fischer rebar anchors FRA under shear load with mortar FIS SB

Size			M12	M16	M20	M24
Steel failure without lever arm						
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86	124
Partial safety factor	γ _{Ms,V} 1)	[-]		1,	56	
Steel failure with lever arm						
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	92	233	454	785
Partial safety factor	1) γ M s,V	[-]		1,	56	
Concrete pryout failure						
Factor k in equation (5.7) of TR 029 for the design of Bonded Anchors	k	[-]		2	,0	

fischer Superbond

Performances
Design of bonded anchors
Static or quasi-static action under shear loads

Annex C 8

Table C11: Displacements under tension load for threaded rods¹⁾

Size	М8	M10	M12	M16	M20	M24	M27	M30		
	d conc	rete; tei	mperatu	ıre ranç	je I, II, I	II, IV				
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,07	0,08	0,09	0,10	0,11	0,12	0,13	0,13
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,13	0,14	0,15	0,17	0,17	0,18	0,19	0,19

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{\text{N0}} \cdot \tau_{\text{sd}} / 1,4$ Displacement for long term load = $\delta_{\text{N}\infty} \cdot \tau_{\text{sd}} / 1,4$ (τ_{sd} : design bond strength)

Table C12: Displacements under shear load for threaded rods¹⁾

Size	M8	M10	M12	M16	M20	M24	M27	M30		
	d conc	rete; te	mperati	ıre ranç	ge I, II, I	II, IV				
Displacement	δ_{V0}	[mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06	0,05	0,05
Displacement	δν∞	[mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09	0,08	0,07

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4$ Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4$ (V_d : design shear resistance)

Table C13: Displacements under tension load for fischer internal threaded anchors RG MI¹⁾

Size			М8	M10	M12	M16	M20
Un-cracked and cra	acked co	ncrete; temperatu	re range I,	II, III, IV			
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,09	0,10	0,10	0,11	0,19
Displacement	δ _{N∞}	[mm/(N/mm ²)]	0,13	0,15	0,15	0,17	0,19

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{N0} \cdot \tau_{sd} / 1,4$ Displacement for long term load = $\delta_{N\infty} \cdot \tau_{sd} / 1,4$ (τ_{sd} : design bond strength)

Table C14: Displacements under shear load for fischer internal threaded anchors RG MI¹⁾

Size			М8	M10	M12	M16	M20
Un-cracked and cra	cked concr	ete; temperature	range I, II	, III, IV			
Displacement	δ_{V0}	[mm/kN]	0,12	0,09	0,08	0,07	0,05
Displacement	δ _{V∞}	[mm/kN]	0,18	0,14	0,12	0,10	0,08

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4$ Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4$ (V_d : design shear resistance)

fischer Superbond

Performances
Displacements threaded rods and fischer internal threaded anchor RG MI

Annex C 9

Table C15: Displacements under tension load for reinforcing bars 1)

Size		Ø	8	10	12	14	16	20	25	28	32
Un-cracked and	d cracl	ked concrete; te	emperat	ure ran	ge I, II, I	II, IV					
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,12	0,13	0,13
Displacement	δ _{N∞}	[mm/(N/mm ²)]	0,12	0,13	0,13	0,15	0,16	0,16	0,18	0,20	0,20

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{\text{N0}} \cdot \tau_{\text{sd}} / 1,4$ Displacement for long term load = $\delta_{\text{N}\infty} \cdot \tau_{\text{sd}} / 1,4$ (τ_{sd} : design bond strength)

Table C16: Displacements under shear load for reinforcing bars¹⁾

Size		Ø	8	10	12	14	16	20	25	28	32
Un-cracked and	d crack	ced concrete; te	emperat	ture ran	ge I, II, I	II, IV					
Displacement	δ_{V0}	[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,06	0,05	0,05
Displacement	δ _{V∞}	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,06

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4$ Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4$ (V_d : design shear resistance)

Table C17: Displacements under tension load for fischer rebar anchors FRA¹⁾

Size			M12	M16	M20	M24
Un-cracked and cracked	d concrete;	temperature range	I, II, III, IV			
Displacement	δ_{N0}	[mm/(N/mm²)]	0,09	0,10	0,11	0,12
Displacement	δ _{N∞}	[mm/(N/mm ²)]	0,13	0,16	0,16	0,18

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{N0} \cdot \tau_{sd} / 1,4$ Displacement for long term load = $\delta_{N\infty} \cdot \tau_{sd} / 1,4$ (τ_{sd} : design bond strength)

Table C18: Displacements under shear load for fischer rebar anchors FRA¹⁾

Size			M12	M16	M20	M24
Un-cracked and cracket	ed concrete; t	emperature range	I, II, III, IV			
Displacement	δ_{V0}	[mm/kN]	0,12	0,09	0,07	0,06
Displacement	δ _{V∞}	[mm/kN]	0,18	0,14	0,11	0,09

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4$ Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4$ (V_d : design shear resistance)

fischer Superbond

Performances

Displacements reinforcing bars and fischer rebar anchor FRA

Annex C 10

Table C19A: Characteristic values of resistance for fischer threaded rods FIS A and RGM under seismic action performance category C1 with FIS SB or capsule RSB in hammer drilled hole

Size					M8	M10	M12	M16	M20	M24	M27 ⁵⁾	M30			
	stic resistan	ce ter	nsior	load	, steel fa										
	Zinc plated	Prop	ertv	5.8	19	29	43	79	123	177	230	281			
$N_{Rk,s,C1}$	steel	class	•	8.8	30	47	68	126	196	282	368	449			
· •KK,5,C1	Stainless			50	19	29	43	79	123	177	230	281			
[kN]	steel A4 and	Prop class	•	70	26	41	59	110	172	247	322	393			
	steel C	Olasc	•	80	30	47	68	126	196	282	368	449			
	Zinc plated	Prop	erty	5.8					1,50						
γ _{M,s,C1} 1)	steel	class	6	8.8					1,50						
	Stainless	D		50					2,86						
[-]	steel A4 and	Prop		70		1,50 ²⁾ / 1,87									
	steel C			80					1,6						
	stic bond res	istar	ice, c	ombi	ned pul	lout and	concret	e cone	failure						
Temperature range I ³⁾	,	₹ _{Rk,C1}	[N/n	nm²]	4,6	5,0	5,6	5,6	5,6	5,6	5,6	6,4			
Temperature range II ³⁾	,	τ _{Rk,C1}	[N/n	nm²]	4,3	4,6	5,6	5,6	5,6	5,6	5,3	6,0			
Temperature range III ³⁾	,	t _{Rk,C1}	[N/n	nm²]	3,9	4,3	4,9	4,9	4,9	4,9	4,5	5,1			
Temperature range IV ³⁾	,	t _{Rk,C1}	[N/n	nm²]	3,6	3,9	4,5	4,5	4,5	4,5	4,1	4,7			
Characteris	stic resistanc	ce sh	ear l	oad, s	steel fail	ure witho	ut leve	r arm							
	Zinc	Prop	erty	5.8	9	15	21	39	61	89	115	141			
$V_{Rk,s,C1}^{1)}$	plated steel	clas	-	8.8	15	23	34	63	98	141	184	225			
	Stainless			50	9	15	21	39	61	89	115	141			
[kN]	steel A4 and steel	Prop clas		70	13	20	30	55	86	124	161	197			
	C	Gias.	•	80	15	23	34	63	98	141	184	225			

 $^{^{1)}}$ For fischer treaded rods FIS A / RGM the factor for steel ductility is 1,0 $^{2)}$ f_{uk} = 700 N/mm² ; f_{yk} = 560 N/mm² $^{3)}$ See Annex B 2 $^{4)}$ Only RSB $^{5)}$ Only RSB

fischer Superbond Annex C 11 **Performances** Design of bonded anchors Seismic performances category C1

⁵⁾ Only FIS SB

Table C19B: Characteristic values of resistance for standard threaded rods under seismic action performance category C1 with mortar FIS SB or capsule RSB in hammer drilled hole

Size				М8	M10	M12	M16	M20	M24	M27 ²⁾	M30
Characte	eristic resista	ınce tensic	n load,	steel failu	ıre						
Steel fail	lure						See Tab	ole C19A	\		
combine failure	eristic bond red pullout and	d concrete	cone				See Tab	ole C19A	\		
Characte	eristic resista	ınce shear	load, ste	el failur	e withou	ıt lever a	rm				
	Zinc plated	Property	5.8	6	11	15	27	43	62	81	99
$V_{Rk,s,C1}$	steel	class	8.8	11	16	24	44	69	99	129	158
144,5,51	Stainless	Property -	50	6	11	15	27	43	62	81	99
[kN]	steel A4	70	9	14	21	39	60	87	113	138	
	and steel C class 80				16	24	44	69	99	129	158

Table C20: Characteristic values of resistance for reinforcing rebars under seismic action performance category C1 with mortar FIS SB in hammer drilled hole

Size		Ø	8	10	12	14	16	20	25	28	32	
Characteristic resistance tension load, steel failure												
N _{Rk,s,C1}		[kN]	28	44	63	85	111	173	270	339	443	
Characteristic bond resistance, combined pullout and concrete cone failure (dry and wet concrete)												
Temperature range I ¹⁾	$ au_{Rk,C1}$	[N/mm²]	3,2	4,3	4,5	4,5	5,3	4,5	4,5	4,5	5,1	
Temperature range II ¹⁾	$ au_{Rk,C1}$	[N/mm²]	3,2	3,9	4,1	4,1	4,9	4,5	4,5	4,5	5,1	
Temperature range III ¹⁾	$ au_{Rk,C1}$	[N/mm²]	2,8	3,6	3,8	3,8	4,5	4,1	4,1	4,1	4,7	
Temperature range IV ¹⁾	$\tau_{\text{Rk},\text{C1}}$	[N/mm²]	2,5	3,2	3,4	3,4	4,1	3,8	3,8	3,8	4,3	
Characteristic resistance shear load, steel failure without lever arm												
$V_{Rk,s,C1}$		[kN]	10	12	22	30	39	61	95	119	155	

¹⁾ See Annex B 2

Ferformances
Design of bonded anchors
Seismic performances category C1

Annex C 12

²⁾ Only FIS SB

Table C21: Characteristic values of resistance for fischer threaded rods FIS A, RGM and standard threaded rods under seismic action performance category C2 with FIS SB in hammer drilled hole

Size						M10	M12	M16	M20	M24	M27	M30
Characte	ristic resistand	ce ten	sion load,	steel fa	ilure							
N _{Rk,s,C2}	Zinc plated steel		Property class	5.8			39	72	108	177		
				8.8			61	116	173	282		
	Stainless steel		Property class	50			39	72	108	177		
				70			53	101	152	247		
	A+ and sicc		Class	80	-		61	116	173	282	-	
Characte	ristic bond res	istan	ce, combii	ned pull	lout an	d cond	rete co	ne fail	ure			
Temperature range $I^{1)}$ $\tau_{Rk,C2}$ [N/mm ²]							4,5	3,2	2,6	3,0		
Temperature range II^{1} $\tau_{Rk,C2}$ [N/mm ²]						4,5	3,2	2,6	3,0			
Temperature range III ¹⁾ $\tau_{Rk,C2}$ [N/mm ²]						3,9	2,7	2,3	2,6			
Temperature range IV $ au_{Rk,C2}$ [N/mm²]							3,6	2,5	2,1	2,4		
	δ ₁₁ (2) (3)		[mm/(N	l/mm²)]			0,09	0,10	0,11	0,12		
$\frac{\delta_{N,(DLS)}^{3)}}{\delta_{N,(ULS)}^{3)}}$		[mm/(N/mm ²)]				0,15	0,17	0,17	0,18			
	14,(020)			/-			,	,	,	,		
Characte	rietic recietan	na eh	ar load e	tool fail:	ura wil	hout le	War ari	n				
Characteristic resistance sh		Property	5.8		-	13,9	27,3	42,7	62,3	_		
V _{Rk,s,C2} ²⁾	Zinc plated steel		class	8.8		_	22,4	44,1	68,6	98,7	_	_
				50		_	13,9	27,3	42,7	62,3	_	-
	Stainless stee		Property	70	_	_	19,8	38,5	60,2	86,8	_	_
	and steel C		class	80	-	-	22,4	44,1	68,6	98,7	-	-
			•									
$\delta_{V,(DLS)}^{4}$ [mm/(N/mm ²)]					-	-	0,18	0,10	0,07	0,06	-	-
$\delta_{V,(ULS)}^{4)}$ [mm/(N/mm ²)]						l	0,25	0,14	0,11	0,09	I	I

¹⁾ See Annex B 2

4) Calculation for displacement

 $\delta_{N0} = \delta_{N0\text{-Faktor}} \cdot \tau;$

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V;$

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau;$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V;$

fischer Superbond

Performances

Design of bonded anchors Seismic performances category C2 Annex C 13

²⁾ For fischer treaded rods FIS A / RGM the factor for steel ductility is 1,0

³⁾ Calculation for displacement